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Abstract
Via numerical calculation of the spin-dependent Dirac–Bogoliubov–de Gennes equation, the
differential conductance is obtained for a ferromagnet/ferromagnet/superconductor (F/F/S)
junction on graphene where the two F layers are undoped. If the two F layers have noncollinear
magnetizations, the spin-flipped scattering at the F/F interface leads to the novel Andreev
reflection (AR), in which the spin directions of an incident electron and the reflected hole are
opposite to each other. When the exchange energy is larger than the superconducting gap, this
novel AR manifests itself as sub-gap differential conductance peaks because of the formation of
spin-flipped Andreev bound states in the intermediate F layer, whereas for the parallel and
anti-parallel configurations no such peaks can be found. In the transitional regime with the
exchange energy close to the gap, for noncollinear configurations, the round-trip path
supporting the formation of those bound states is broken and a differential conductance dip can
be found near the point where the external bias equals the exchange energy.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Recent fabrication of graphene [1], a monatomic layer of
graphite with a honeycomb lattice structure, provides the
opportunity for employing its unusual low-energy electronic
properties to design novel micro-electronic devices. Undoped
graphene has six discrete Fermi points, corresponding to the
corners of the hexagonal Brillouin zone, out of which only
two are inequivalent. In the vicinity of these two valleys, the
excitation spectrum obeys a Dirac-like Hamiltonian [2], which
yields a linear energy dispersion instead of a parabolic one
(cf figure 1). The electronic and hole states are interconnected,
and chirality, the projection of pseudo-spin on the direction
of motion, is conserved in the tunneling process [3]. It
is of theoretical interest and of technological importance to
investigate how such unusual low-energy electronic structures
affect the transport properties under the influence of long-range
correlations, such as superconductivity and magnetism [4–9].

The state-of-the-art fabrication technology can introduce
these types of correlations in graphene via the proximity

Figure 1. Energy spectra of (a) usual F metal with EF �= 0 and (b)
undoped F graphene with EF = 0. The exchange field is assumed to
be parallel to the z axis, and ⇑ and ⇓ denote the spin-up and
spin-down electrons, respectively.

effect. A measurable supercurrent has been observed between
regions of graphene under the influence of proximity-
induced superconductivity [10, 11]. It has been shown that
ferromagnetic correlation can be induced in graphene by means
of an external electrical field [12, 13]. Other suggestions are
proposed to achieve magnetism in graphene by exploiting a
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magnetic gate in contact with a graphene layer [8, 14]. The
proximity layer can be made up of a magnetic insulator [15],
such as EuO, or a multiferroic material, e.g. BiFeO3 [16], so
that the magnetization in the proximity layer, and consequently
the exchange field in the graphene, can be tuned by an external
magnetic field in the former case and an electric field in
the later. Long electronic mean free paths [17] and large
spin relaxation times [18] of the carbon-based system make
graphene an attractive candidate for the observation of near-
ballistic spin transport.

Spin-dependent transport through ferromagnet/
superconductor (F/S) junctions is an important subject in the
field of spintronics, which has recently attracted a lot of atten-
tion because of the hope of fabricating novel devices manipu-
lating spin in addition to charge [19–21]. Suppose the super-
conductor has the s-wave pairing symmetry. When a spin-up
electron is incident from the normal side with its energy below
the superconducting gap�, a Cooper pair is injected into the S
side with a spin-up hole reflected, which is known as Andreev
reflection (AR) [22]. In this process, spin-singlet pairing states
are formed near the interface. However, in the usual F/S junc-
tions, due to the spin polarization caused by the exchange field
in ferromagnetic metals, (cf figure 1(a), where the spin-down
electrons are minority particles) the AR is suppressed [23] and
the sub-gap differential conductance is decreased [24–29]. If a
two-dimensional electronic gas (2DEG) with the Rashba spin–
orbit coupling is inserted between the F and S parts, the spin
precession in the 2DEG can lead to the so-called novel AR, in
which the incident electron and the reflected hole have oppo-
site spin directions. As a result, spin-triplet pairing states are
formed near the interface and the sub-gap differential conduc-
tance is enhanced [30].

The idea of novel AR was first introduced by Niu and
Xing in their studies of the spin-triplet pairing states in
F/F/d-wave superconductor heterojunctions with noncollinear
magnetizations [31]. However, in the usual F/F/S junctions
with half-metallic F layers, the exponential damping in the
intermediate F layer prevents the Andreev-reflected spin-up
hole to be spin-flipped at the F/F interface since the minority
spin conduction band has its bottom. In graphene, the
conduction band is interconnected with the valence band,
(cf figure 1(b)) and the ‘minority’ spin propagation in the
intermediate F layer is not exponentially damped [32, 33]. For
F/F/S junctions on graphene with noncollinear magnetizations,
the spin-flipped scattering at the F/F interface can lead to the
novel AR even if the exchange energy h is much larger than
the Fermi energy EF. In the present work, we investigate how
the novel AR influences the differential conductance through
an F/F/S junction on graphene with two undoped F layers.

For this purpose, the differential conductance through
the F/F/S junction is obtained via numerical calculation of
the spin-dependent Dirac–Bogoliubov–de Gennes (DBdG)
equation [4, 5, 9, 32, 33]. Here, the S layer is assumed
to have the s-wave pairing symmetry. If the two F layers
have noncollinear magnetizations, the spin-flipped scattering
at the F/F interface leads to the novel AR as expected. In the
situation with h � �, this novel AR manifests itself as sub-
gap differential conductance peaks because of the formation of

spin-flipped Andreev bound states in the intermediate F layer,
whereas for the parallel and anti-parallel configurations no sub-
gap peak can be found. In the transitional regime with h ∼ �,
for noncollinear magnetizations, the round-trip path supporting
the formation of those bound states is broken and a differential
conductance dip can be found near the point E = h.

The organization of this paper is as follows. In section 2,
the theoretical model is presented. In section 3, the numerical
results are illustrated and discussed. A brief summary is given
in section 4.

2. Model and formulae

In the present paper, we calculate the differential conductance
through an F/F/S junction formed on a graphene sheet, which
is assumed to be the xy plane. The F/F and F/S interfaces
are located at x = −L and x = 0, respectively, and the
translational invariance is kept in the y direction. In the left
F layer, the magnetization is along the z axis, whereas it
points to the direction (0, sin θ, cos θ) in the middle F layer.
The S layer is assumed to have the s-wave pairing symmetry.
Neglecting the self-consistency of the spatial distribution of
the pair potential in the S layer, we take the pair potential
as �(x) = ��(x) with �(x) the Heaviside function. The
electrostatic potentials in different regions can be adjusted
independently by separate gate voltages or by different doping
levels. For simplicity, the potentials are assumed to be the
same in the two F layers, which have a potential difference
U with the S layer. Although in the present work, what we are
interested in is the F/F/S junction with two undoped F layers
where EF = 0, for the use of subsequent works, EF is retained
in the formulae. To deal with superconductivity via the mean-
field approximation, the restriction � � EF + U should be
satisfied.

The low-energy electronic and hole excitations in the
F/F/S junction can be described by the following spin-
dependent DBdG equation [4–6, 9, 32–34]:(

Ĥτ − �̂s · �h(x)+ V (x)− EF

�(x)

�(x)
EF − V (x)− Ĥτ − �̂s · �h(x)

)
�τ = E�τ (1)

with τ = K , K ′, the valley index. In the valley K (K ′),
ĤK (K ′) = −ih̄vF(σ̂x∂x + (−)σ̂y∂y) with vF ≈ 106 m s−1.

Here, �̂s and �̂σ are 2 × 2 Pauli matrices operating in the spin
and sublattice subspaces, respectively. V (x) = −U�(x) and
�h(x) = h�(−x)(0, sin θ(x), cos θ(x)) with θ(x) = 0 for x <
−L and θ for −L < x < 0. Via time-reversal transformation,
the electron-like and hole-like parts of the spinor �τ are
related to each other. Taking into account the spin degree of
freedom, the time-reversal operator is T = τ̂x ⊗ (−iŝy)⊗ σ̂zC
with C the operator of complex conjugate [35]. As a result,
�K = (	K↑A,	K↑B,	K↓A,	K↓B,−	∗

K ′↓A,	
∗
K ′↓B,	

∗
K ′↑A,

−	∗
K ′↑B)

T. In a similar way, �K ′ can be obtained. Due to the

valley degeneracy, only ĤK is considered in our calculation
and the subscript K is omitted.

When an electron with energy E is incident from the left
F layer, the wavenumber in the transverse direction, ky , is
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conserved in the tunneling process. The states of electronic
and hole excitations in this layer are: φe

↑(α
e
↑) = 1√

2
(1, 0)T ⊗

(1, 0)T ⊗ (1, eiαe
↑ )Teike

↑ cosαe
↑x , φe

↓(α
e
↓) = 1√

2
(1, 0)T ⊗ (0, 1)T ⊗

(1, eiαe
↓)Teike

↓ cosαe
↓x , φh

↑(α
h
↑) = 1√

2
(0, 1)T ⊗ (1, 0)T ⊗

(1,−eiαh↑)Teikh↑ cosαh↑x and φh
↓(α

h
↓) = 1√

2
(0, 1)T ⊗ (0, 1)T ⊗

(1,−eiαh↓)Teikh↓ cosαh↓x . Here, kτ↑ = (E ± EF + h)/(h̄vF)kτ↓ =
(E ± EF − h)/(h̄vF) with the signs + and − corresponding
to τ = e and h, respectively, and ατs = sin−1(ky/kτs ). In the
above states, a common factor eiky y is omitted for clarity. With
the incident electron having spin s, the total wavefunction in
this layer can be written as

�s = φe
s (α

e
s )+

∑
s ′
(rs ′sφ

e
s ′(α̃

e
s ′)+ r A

s ′sφ
h
s ′(α̃

h
s ′)) (2)

with α̃τs ′ = (π − |ατs ′ |)ατs ′/|ατs ′ |.
In the middle F layer, with the magnetization rotating an

angle θ around the x axis compared to that in the left F layer,
the electron and hole spinors rotate in the spin subspace and
the corresponding sub-spinors change from (1, 0)T and (0, 1)T

to (cos θ2 , i sin θ
2 )

T and (i sin θ
2 , cos θ2 )

T, respectively, whereas
the components in the Nambu and sublattice spaces remain
unchanged. With these new spinors written as ϕτs , the total
wavefunction in this region is

�s =
∑
τ,s ′
(aτs ′sϕ

τ
s ′(α

τ
s ′)+ bτs ′sϕ

τ
s ′(α̃

τ
s ′)). (3)

In the S layer, the electron- and hole-like excitations are
given as ψe

↑(β
e) = 1√

2
(u, v)T ⊗ (1, 0)T ⊗ (1, eiβe

)Teipe cosβex ,

ψe
↓(βe) = 1√

2
(u, v)T ⊗ (0, 1)T ⊗ (1, eiβe

)Teipe cosβex ,

ψh
↑(β

h) = 1√
2
(v, u)T ⊗ (1, 0)T ⊗ (1, eiβh

)Teiph cosβhx and

ψh
↓(β

h) = 1√
2
(v, u)T ⊗ (0, 1)T ⊗ (1, eiβh

)Teiph cosβhx . Here,

pτ = (±√
E2 −�2 + EF + U)/(h̄vF) and βτ =

sin−1(ky/pτ ). The superconductor coherent factors u
and v are u = √[1 + E−1(E2 −�2)1/2]/2 and v =√[1 − E−1(E2 −�2)1/2]/2. Then in the S layer, the total
wavefunction is

�s =
∑

s ′

(
te
s ′sψ

e
s ′(β

e)+ th
s ′sψ

h
s ′(π − βh)

)
. (4)

From the boundary condition, i.e. the continuity of the
wavefunction �s at the interfaces, all of the superposition
coefficients in the above three equations can be obtained. For
the F/F/S junction, which is W in width, ky can only take a
series of quantized values. In the limit W → ∞, Ns , the
number of discrete ky is much larger than unity with Ns �
1, and the differential conductance can be obtained, instead
from a summation of contributions of quantized transverse
modes, from an integration over ky . Then the zero-temperature
differential conductance of the F/F/S junction can be written as
[4, 5, 9, 14, 36]

G(E) =
∑

s= ↑,↓

1

|ke
s |

∫ |ke
s |

0
dky Gs(E, ky), (5)

where

Gs(E, ky) = Ns

N↑ + N↓

×
∑

s ′

(
δs ′s − |rs ′s |2 cosαe

s ′

cosαe
s

+ |r A
s ′s |2

cosαh
s ′

cosαe
s

)
. (6)

Here, Ns = |ke
s |W/π is the number of allowed ky when a spin

s electron with energy E is incident into the junction [37].
In the above two equations, the differential conductance is
normalized with 2e2

h (N↑ + N↓) and the factor 2 is the valley
degeneracy.

In the present work, what we are interested in is the F/F/S
junction with two undoped F layers. In this junction, EF = 0,
ke

↑ = kh
↑ = E + h and ke

↓ = kh
↓ = E − h. At E = h, N↓ = 0,

but the condition N↓ � 1 is satisfied at all of the other points
for a large W . If ky > |E − h|, the novel AR with a spin ↑
electron converted to a spin ↓ hole is forbidden, but the other
novel AR with a spin ↓ electron converted to a spin ↑ hole
and the two types of usual AR are still permitted in this F/F/S
junction.

3. Results and discussion

Before turning our attention to the numerical data, we first
analyze the tunneling process through this F/F/S junction
qualitatively. When θ = 0 or π , no spin flip can take
place at the F/F interface and the 8 × 8 spin-dependent
DBdG Hamiltonian can be decomposed into two independent
4 × 4 ones for the spin-up and spin-down spinors, where
the exchange energy can be simply treated as an effective
electrostatic potential [9, 32, 33]. In these two configurations,
r↓↑ = r↑↓ = r A

↓↑ = r A
↑↓ = 0. Only the usual AR can assist

the sub-gap tunneling and spin-singlet pairing states are formed
near the F/S interface. If the magnetizations of the two F layers
are noncollinear, the spin-flipped scattering can take place at
the F/F interface. With a spin-up electron incident into the
junction, not only a spin-up hole but also a spin-down hole
can be reflected. This is the so-called novel AR [30, 31] and
spin-triplet pairing states are formed near the F/S interface.
The novel AR shows entirely different characteristics in the
situations with h � � and with h � �. In the former,
the low-energy spectrum of undoped graphene with exchange
energy h (cf figure 1(b)) shows that, at the F/S interface, the
AR is specular [4]. That is, in the process of electron–hole
conversion, the direction of transverse movement is kept. At
the F/F interface, although the spin-conserved reflection is
specular, the spin-flipped reflection is a retro-reflection, i.e. the
direction of transverse movement is reversed. The specular
AR at the F/S interface and the spin-flipped retro-reflection
at the F/F interface constitute a round-trip path, which leads
to the formation of spin-flipped Andreev bound states in the
intermediate F layer. When h � �, the F/F/S junction reduces
to the corresponding spin-degenerate system which has been
studied in [4]. When h ∼ �, the spin-flipped Andreev bound
states can still be formed if E < h. However, if E > h,
although the electron–hole conversion still takes place via
specular Andreev reflection, the reflection at the F/F interface
is always specular no matter whether the spin is flipped or

3
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0

Figure 2. (a) G–E curves with �L/(h̄vF) = 1 for θ = 0 (black
solid), π/4 (red dashed), π/2 (green dotted), 3π/4 (blue
dashed–dotted) and π (yellow dash–dot–dotted). (b) G–E curves for
θ = π/2 with �L/h̄vF = 1 (black solid) and�L/(h̄vF) = 2 (red
dashed). The other parameters are h = U = 100� and EF = 0.

conserved. This breaks the round-trip path and consequently
the spin-flipped Andreev bound states [38].

Now, we turn our attention to the numerical data and
first consider the situation with h � �. In this situation, it
is assumed that h = U = 100�. The corresponding G–
E curves with θ increased from 0 to π in steps of π/4 are
presented in figure 2(a). For θ = 0, the F/F/S junction can
be looked at as an F/S junction. In this configuration, the sub-
gap differential conductance takes a constant value 4/3. This
is entirely different from the usual half-metallic F/S junctions
where the AR is suppressed by the spin polarization. The
reason has been analyzed in the above paragraph. For θ = π ,
the magnetizations of the two F layers are in an anti-parallel
configuration and the exchange field simply causes a mismatch
of effective electrostatic potential between the two F layers.
As a result, the differential conductance is depressed compared
with the parallel configuration and a peak is located at the gap
edge. With the exchange energy h enhanced, the sub-gap G
is reduced for both the parallel and antiparallel configurations,
but a sub-gap peak can never be found.

Compared with the parallel and anti-parallel configura-
tions, the most remarkable feature of the F/F/S junctions with
noncollinear magnetizations is the appearance of differential
conductance peaks in the gap. This is a direct manifestation of
the formation of spin-flipped Andreev bound states in the in-
termediate F layer. The peak–valley contrast is related with θ .
When θ = π/2, the largest probability for spin-flipped reflec-
tion to take place leads to the strongest peak–valley contrast.
With the magnetizations close to the parallel and antiparallel
configurations, the contrast becomes weak. Varying the ex-
change energy h cannot change the number of sub-gap peaks.
For the F/F/S junction studied here with �L/(h̄vF) = 1, two
sub-gap peaks can be found, one of which is located at the gap
center. Since the sub-gap differential conductance peaks are
caused by the formation of spin-flipped Andreev bound states
in the intermediate F layer, if the length of the round-trip path
is increased, more peaks should appear. In figure 2(b), the G–
E curve at θ = π/2 is plotted for �L/(h̄vF) = 2. In this
circumstance, three sub-gap peaks are found, one of which
is still located at the gap center, whereas with θ = 0 or π ,
the sub-gap differential conductance is almost unchanged with

Figure 3. Variations of g↑s (black solid), g↓s (red dashed), gA
↑s (green

dotted) and gA
↓s (blue dashed–dotted) with E for θ = 0 ((a) and (b)),

π ((c) and (d)) and π/2 ((e) and (f)). In the left column, s = ↑ and in
the right s = ↓. The other parameters are�L/(h̄vF) = 1,
h = U = 100� and EF = 0.

L. The contrast between the configurations with collinear and
noncollinear magnetizations proves that spin-flipped Andreev
bound states are formed in the latter.

To further verify the existence of novel AR in the
transport through the F/F/S junction on graphene, the
variation of gs ′s and g A

s ′s with E is plotted in figure 3 for
parallel and antiparallel configurations and for θ = π/2.

Here, gs ′s = 1
|ke

s |
∫ |ke

s |
0 dky (δs ′s − |rs ′s |2 cosαe

s′
cosαe

s
) and g A

s ′s =
1

|ke
s |

∫ |ke
s |

0 dky |r A
s ′s |2 cosαh

s′
cosαe

s
. As expected, only with noncollinear

magnetizations can spin-flipped scattering take place, which
results in the novel AR with nonzero g A

↓↑ and g A
↑↓. With

collinear magnetizations, only spin-conserved scattering and
consequently the usual AR take place. For the parallel
configuration, g↑↑ = g↓↓ and g A

↑↑ = g A
↓↓ in the gap since the

low-energy spectra of spin-up (-down) electrons and spin-up (-
down) holes are identical when EF = 0. For the anti-parallel
configuration, these two equations hold only at E = 0, and
with E increased they are broken, but this breaking is weak
since the difference between E + h and |E − h| is very small
for h � �. A similar phenomenon can also be found between
g↓↑ and g↑↓ and between g A

↓↑ and g A
↑↓ when noncollinear

magnetizations are taken. Although all of the above results are
obtained at EF = 0, the spin-flipped Andreev bound states can
be formed for EF �= 0 only if the two conditions h + EF � �

and h−EF � � are satisfied. With h decreased, similar results
can be found until h ∼ 10�.

Next, we consider the situation with h ∼ �. In
figures 4(a) and (b), the G–E curves are presented for θ =
π/2 and π , respectively, which correspond to the noncollinear

4
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Figure 4. G–E curves for θ = π/2 (a) and π (b) with h = � (black
solid),�/2 (red dashed) and �/10 (green dotted). The other
parameters are the same as in figure 3.

Figure 5. The same as figure 3 for θ = π/2 with h = �/2.

and antiparallel configurations. Here, the results for θ =
0 are not given because the differential conductance for
the parallel configuration at h = 10� already shows the
characteristics of the corresponding spin-degenerate system.
For the noncollinear configuration, at the point E = h, the
novel AR with a spin ↑ electron converted to a spin ↓ hole
is forbidden, and only the usual AR from spin ↑ electrons to
spin ↑ holes contributes to G↑. Meanwhile, near this point,
|ke

↓| � |ke
↑| and the contribution to G mainly comes from

G↑. As a result, a large dip can be found near this point
and the dip cannot reach to zero [4]. The position of this
dip cannot be moved by the variation of L, but with h �
�, for example with h = �/10, the dip disappears. For
the antiparallel configuration, a dip can also be found when
h = �, but this sub-gap dip comes neither from the formation
of spin-flipped Andreev bound states nor from the forbidding
of some type of novel AR at a special point, but from the
complicated effect of multiscattering between the F/F and F/S
interfaces, and its position varies with L. For �L/(h̄vF) = 1,
this dip already disappears at h = �/2. As shown from
the differential conductance in figure 4, with h decreased
from � to �/10, the F/F/S junction gradually reduces to the
corresponding spin-degenerate system [4]. To further clarify
the underlying physics in this situation, the gs ′s–E and g A

s ′s–E
curves with h = �/2 are plotted in figure 5 for θ = π/2. At
E = h = �/2, g↓↑ and g A

↓↑ are zero since ke
↓ = kh

↓ = 0.
Because of the same reason, a small sharp peak or dip can be
found at this point in the gs↓–E and g A

s↓–E curves.
The recent experimental observation of electron–hole pud-

dles in graphene [39] suggests that such charge inhomo-

geneities play an important role in the transport characteristics
of graphene close to the Dirac point. In the F/F/S junction with
h � �, the general phenomena of novel AR and formation of
spin-flipped Andreev bound states should pertain although the
wavefunctions are no longer plane waves.

In the above discussion, electrons are incident from the
left F layer and into the S layer, and our attention is focused on
the spin-flipped Andreev bound states. If, on the other hand,
three terminals are attached to the two F and the S layers,
respectively, and electrons are incident from the left F layer,
the Andreev-reflected holes can leave the junction from the
terminal attached to the middle F layer. In this situation, the
electrons dragged into the middle F layer have different spin
directions from those incident into the left F layer. This is
the so-called nonlocal or crossed Andreev reflection (CAR),
which is usually found in F/S/F junctions with half-metallic
F layers. The special dispersion relation of graphene in the
vicinity of the two valleys allows the reflection-type CAR.
The study of characteristics of this reflection-type CAR and
its application [7] is an interesting topic in future work.

In the present paper, only the s-wave pairing symmetry
is considered. As we know, the spin-singlet Cooper pairs
also admit the d-wave pairing symmetry. In this situation,
the existence of line nodes that cross the Fermi surface in the
gap considerably affects the properties of sub-gap differential
conductance, but the mechanism leading to the spin-flipped
Andreev bound states still plays an important role. If the
proximity layer on the S side has p-wave pairing symmetry,
the spin-triplet pairing states are induced in the S layer and
the basic physical picture is entirely changed. The study of
Andreev reflection and differential conductance under these
unconventional pairing symmetries is another interesting topic
in future work.

4. Summary

In summary, via numerical calculation of the spin-dependent
DBdG equation [4–6, 9, 32, 33], the differential conductance
is obtained for an F/F/S junction on graphene with the two
undoped F layers. If the two F layers have noncollinear
magnetizations, the spin-flipped scattering at the F/F interface
leads to the novel AR, in which the incident electron and the
reflected hole have opposite spin directions. In the situation
with h � �, this novel AR manifests itself as sub-gap
differential conductance peaks because of the formation of
spin-flipped Andreev bound states in the intermediate F layer,
whereas for the parallel and anti-parallel configurations, no
such peak can be found. In the transitional regime with
h ∼ �, the round-trip path supporting the formation of those
bound states for noncollinear magnetizations is broken and
a differential conductance dip can be found near the point
E = h, but this dip cannot reach to zero.
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